Translate

Saturday, February 23, 2019

Energy efficiency and cost to operate of appliances


humidifier with data logger
In my last post I talked about a new humidifier I purchased after careful deliberation.  (As an Amazon Associate I earn from qualifying purchases.)  You see, when I add an electrical appliance to my home I give very serious thought to how much energy it uses and what that will cost.  By cost I mean actual dollars per month, but also the cost to the planet when considering carbon footprint of the emissions needed to power it.  For most of the year my solar power system covers all my electrical needs, but due to the lack of sun hours in the winter, I do use utility power.  I write this blog to raise awareness for those who do not yet have solar or other renewably sourced electricity.

When I got the humidifier, I took a basic set of energy readings and found that it uses 16 to 24 Watts depending on the setting.  I generally use the middle setting that uses about 22 Watts.  As such, this is an extremely efficient humidifier.  Since I only use it for 8 hours each night in my bedroom I assumed the cost would be quite low.  A quick calculation showed that it would use 5.2kW/month if used every night (which I don't).  I pay about 16 cents/kW here in Maine - so my monthly cost would be about 84 cents.  Not bad!  And here in New England our utility power is sourced partially from renewables (it's around 40-50% currently) so the carbon footprint is modest.

Data logger showing Watts of humidifier
But wait! There's more!  This particular humidifier has a humidistat (showing 20% in the image above), so it probably cycles on and off as needed to maintain the 40% humidity I prefer at night.  So I connected my data logger to the power cord (see image at top of the page) and logged readings every second for one night.  Here's what I saw:
At first glance it seemed like it was jumping from 20 to 22 Watts all night.  But let's zoom in on that data:
Aha! Now we see that it is cycling on and off with a duty cycle of roughly 45-50% and dropping down to a baseline of about 5W to power the electronics.  (That's actually about 2W - my logger calibration is a bit off).  So the actual cost is around half what I had calculated.  Neat!

Lets look at the cost calculations.  To get the monthly cost I started with the actual Watts and multiplied it by hours/day to get daily Watts used:
W per Day = W X Hours per day  (22 X 8 = 176)
Then multiplied that by 30 to get Watts per month

W per month = W per Day X 30  (176 X 30 = 5280)
This can be expressed as 5.28 kWh (we pay the utility company by the kWh)
Here in Maine I pay 16 cents/kWh, so I just multiply
$/month = kWh X $/kWh (5.28 X .16 = 84.48 cents/month)

But thanks to my data logger, I see that in reality I'm using about half that or less than 43 cents if I use it every night.  So even in the winter when I use utility power, the carbon footprint of this humidifier is relatively token especially when compared with all the other types (evaporative and steam) that use MUCH more power.
 __________________________________________________________


Data logging refrigerator power
Since I had got my data logger out, I decided to log some other appliances.  Generally the biggest energy using appliance in a home is the refrigerator and my 20+ year old one is relatively efficient.  Shown above is my data logger connected to an adapter cable that can measure AC current in Amps that is  converted to Watts in the logger.  And yes, that cool blue night light doubles as a Volt meter - I'm really that geeky!


As you may know, your fridge does not run all the time.  Typically the compressor will be on about 25-30% of the time, and that is illustrated by my log above. The on time is about 10 minutes, an it's off about 33 minutes.  Those big spikes represent the starting energy of the compressor - they only last about a second and the utility meter can't respond that quickly, so it does not factor in to my energy costs.

So here's the math on the cost to operate my fridge
300 Watts X 24 = 7200W/day (if always on)
7200W X .25 = 1800W/Day = 1.8kWh (actually on 25% of the time)
1.8kWh X 30 = 54kWh/month (30 days)
54kWh X 16 cents/kWh = $8.64 per month (your cost per kWh will be different).

So if you use a KillAwatt meter or any other energy monitor to try and calculate your energy cost for a given appliance, you should always leave it running for at least 24 hours to get the average power usage.  Just looking at a power meter in the moment can give you a false impression of actual power consumption.




At the low end of the power spectrum is this heated cat bed that I got recently for my 16+ year old cat Maxx.  She loves it and stays in it all the time.  It is rated at 4 Watts and the surface temperature is just a few degrees above ambient.  I measured 73F with my thermal camera while she was not in it:
When I connected it to an energy monitor, I saw actual readings of 3.5 to 3.7W. Here's the heating pad inside:
Since this in on 24/7, it uses about 2.66 kWh/month at a cost to me of about 42 cents.  It's a small price to pay to keep Maxx happy in her old age.  And she really likes it a lot!


Wednesday, February 6, 2019

Energy efficient humidifier

Click image to see this on Amazon
  
Recently my humidifier stopped working despite relatively frequent maintenance (OK I could have done better).  They all require frequent cleaning and rinsing out with vinegar.  I bought it in a hurry a year ago because I was having sinus infections due to the very dry winter air in Maine and this was relatively inexpensive and off-the-shelf at my local pharmacy.  But I liked being able to stick my face in the warm mist to soothe my sinuses and I could add scent to it which was pleasant.  In retrospect I should have done more research and made a smarter choice to get a more energy efficient unit.

So this time I took my time and studied up on humidifiers and how efficient they are.  I found a very helpful blog post: "How Much Energy Does My Humidifier Use?" that really clarified things.  It verified what I already knew intuitively as an engineer.  Basically there are 3 types of humidifier:

1. Warm mist units that boil water to create steam.  This is the type that I had and it used over 250 Watts.  Not very efficient!  Actually this type are the least energy efficient.  Vicks make several models that I often see in the local pharmacy.

2. Evaporative units blow air across a wet wicking material using a fan that consumes around 50 Watts.  I had one like this years ago and had issues with it.  First the fan was quite loud - even on low.  

And second I had to replace the wick material every few months as they built up mineral deposits and mold.  Also, I did not like the idea of creating waste.  The wicks cost around $7-10 each and were not available in-store when I needed them.

3. Ultrasonic humidifiers use an ultrasonic device that agitates water so it creates water vapor directly, then a small fan pushes it out into the room.  These units are very quiet and relatively affordable - starting at around $45, but you can spend a lot more.  They use a lot less energy.  At 20-30 Watts they are the most efficient type of humidifier.

So I settled on a model I like, this model has good Amazon reviews.
(As an Amazon Associate I earn from qualifying purchases.) 
I did some energy tests and found these readings:
Standby 2W
Low 16W
Medium 20W
High 24W
I also like the control features - they have geek appeal.  Not many humidifiers in this price range have a built-in humidistats and this one let's you set the humidity in 5% increments and displays it in 1% resolution.  It has 3 speeds, none of which make any noticeable sound, I just hear the occasional burble as air comes up into the tank like you would hear from a water cooler.  It has a timer so you can set it to run a certain number of hours.  I only use it at night, so I just turn it on as I go to bed, and set the humidity to 40 and run time for 8 hours.  It works perfectly and maintains an accurate humidity.  And to cap it all off there's a blue LED night light "feature" that I never use, but the geeky designers just had to throw that in!

I also looked specifically for a model that has a flat top for the water tank.  Very few of them do, and it is really helpful to be able to set it upside down in the sink for filling where it will be stable while filling it.  I mean seriously, how are you supposed to fill this one (shown at left)?

As a product designer, I am shocked by the poor ergonomics of most humidifier tanks that have useless "sexy" curves that simply fall over when you place the tank upside down in the sink - requiring you to hold it while filling a gallon or more.  Some of them have dark plastic water tanks that don't let you see the water level which is really dumb!  This is another reason I chose the model I'm using, I can clearly see the water level.


What is impressive about all ultrasonic units is that they start generating cool mist almost immediately.  No waiting for the water to boil and the mist is quite visible so you know it's working.

I'm filling my tank with filtered water and find that it uses 1/4 to 1/2 tank every night in my small bedroom.  So I can go 2-4 days before needing to re-fill the tank. 
 
Also note that it's important to maintain these units per the instructions.  This means soaking the bottom part in white vinegar every few weeks to prevent buildup of calcium deposits.  Read the instructions carefully! 

I'm looking forward to a reduced electric bill next month.  I only pay for electricity for about 4-5 months of the year due to my solar panels, and it really bugs me to have to pay the utility company.

See my next blog post for a detailed evaluation of the power consumption of my humidifier.   

Monday, January 28, 2019

Solar power backup - my dirty little secret

solar panels right before I cleared then in the morning
When I tell people that I have a solar powered home they tend to assume that I have battery backup for power outages.  I don't.  I have a grid intertied system, so any excess power I generate gets fed into the grid for which I get a credit under net metering rules.  In essence the grid is my storage, because I can use up that credit in the fall and winter.  When the power fails my solar power system shuts down to prevent my power from back feeding into the grid and harming line workers (this is a federally mandated safety system).   

By not having a battery I have to use a different strategy to survive the winter storm power outages that average 3 days each year here in rural Maine.  Some outages have run over 7 days, while other are just a few hours.  I need power to run my home based business, well pump, heating systems, refrigerator etc.



Since my solar power system is not designed to incorporate battery backup, I decided to install an automatic home backup generator that runs on propane.  This generator starts up in 15 seconds and powers my whole property - house and workshop. Yes, I'm burning fossil fuel to generate power!  But the cost performance trade-offs made sense at the time.  

My 5kW Generac generator only cost me about $2500 in 2009 from Home Depot and has 700 hours on it as of January 2019.  I installed it myself and do most of the basic maintenance, but also pay for maintenance and repairs as needed.  The cost of installing a large battery bank would have been more than double my modest investment.  Lead acid batteries need frequent maintenance and replacement every 5-7 years and the cost just did not make sense to me.  Batteries also have a very finite amount of energy storage lasting maybe a day or so without recharging whereas the stored propane in my tanks can provide power for almost 2 weeks if needed.

After every snow storm, the first thing I do is clear the solar panels and collectors - even if the power did not go out.  If the power did go out, the generator turns on with in 15 seconds.  I want to get as much free solar energy as possible.  So I have a long snow rake that I use to remove all the snow - usually in the morning before the sun hits the panels.
time-laps video fo snow clearing
Click the image to see a time-lapse video of me clearing the snow on my property and solar panels in February 2018. 
There has been a change in the solar industry in the last year or so.  They are now offering home battery backups - whether or not you have solar power.  This is due the the plunging costs of large batteries like those use in electric vehicles.  Enphase, the company that makes the microinverters that I use have introduced just such a system, and there are many others like the Tesla PowerwallClick here for details about the Enphase battery system.  And click here to read an informative blog post from Energy Sage about Tesla Powerwall cost realities.  At some point I hope to install a system like this, but for now it is beyond my means.

Sunday, January 27, 2019

First major boiler repair since I installed it in 2001



The solar augmented heating system I designed and built for my workshop back in 2001 has performed very well (details on my web site).  Maintenance has been minimal as far as the equipment itself is concerned the only part that failed was a pressure tank in 2010 which was easy to replace.  The boiler is only used to augment the stored solar heat in the 40 gallon storage tank so it rarely is running full blast.  It just needs to add enough heat to bring the temperature up to 140F for my radiators.  On a typical sunny day in winter the water in the storage tank is over 150F by the late afternoon.  As that gets drawn down to about 110F the boiler makes up the difference.

A week or so ago I noticed that the exhaust blower for the Bosch Aquastar boiler was not running and my utility room was hot and smelled like propane fumes.  The heat was due to the stalled motor that was getting really hot.  The bearings had seized so it could not remove the hot exhaust.



The Aquastar boiler itself has only required minimal maintenance over the last 18 years - good German engineering.  The blower motor has 22545 hours on it.  I know this because I put an hour meter on it to log running hours.  That's equivalent to 2.6 years of continuous operation!

I had to cut the blower off the motor shaft with a sawzall because the lock screw was frozen.  It took me an hour or so of web research to track down a replacement blower motor from one supplier and a motor from another source.  The parts cost less than $150. 

Removing it and replacing it required just a few bolts and screws, and wiring the new motor in.  The wiring in the control box was a total snake pit, but the motor only has 3 wires, so it was not too daunting for a skilled electrical engineer like me.



The new blower runs much quieter because the crud that had built up in the old one was making it run out of balance and it vibrated.
 
I enjoy repairing and maintaining the system that I designed and I hope that it will continue to work for many years.  Click here or on the image below to see live performance of the system.
solar heatinf system diagram




If I could afford it I would replace the solar collectors and storage tank with an air source heat pump and keep the boiler and radiators as a backup.  Heat pumps are better bang for the buck these days.  Solar collectors for building heating are no longer cost competitive both from a performance standpoint and on and return on investment.

Sunday, January 13, 2019

Rechargeable emergency LED lights


Recently I came across a new product that I have found to be helpful.  This is an LED lamp that looks like an ordinary 60W equivalent lamp (9W actual) that contains an internal battery.  The battery charges during normal usage - while the light is on.  Then if the utility power fails the internal circuitry detects this and powers the lamp for up to 3 hours (if it is switched on).  You can't test it by unplugging the light, it needs to be plugged in when the power fails.  I found a 2-pack for under $20 on-line.  (Click here to purchase on Amazon - As an Amazon Associate I earn from qualifying purchases.)

As I played around with them I learned a lot.  First, they come with a socket and hook with a button switch.  This allows them to be used for camping or location specific emergency lighting.  The way they detect an outage is to sense the resistance in the electrical wiring of the house, so the switch just shorts the contacts to turn the lamp on.

You can also turn the lamp on by touching the bottom of the lamp with a damp cloth - or your fingers.  (You can also do an "Uncle Fester" and put it in your mouth to light it by using your tongue to connect the contacts). 

When powered from 120V, they  produce 60W equivalent (850 Lumens) of bright warm light.  On internal battery power the output drops to 40W equivalent (500 Lumens) which is quite bright and useful in any situation.  The battery will last 3-4 hours and you can turn the lamp on and off after a power failure just like a normal light. If it is likely to be a long outage, you could conserve power buy using it sparingly.

I tried replacing lamps in my home with varied success.  First, I installed 1 in my kitchen ceiling where I have 4 flood lights, it came on when I turned the lights off.  I think this is because it sees the other 3 regular LED lights in the circuit and gets confused.  Also it is useless with any remote controlled home automation switch because the internal relay will switch it off when the power fails.  Same goes for room occupancy sensors that will turn off when the utility power fails and can't be turned on.  So these are most useful when used in table and floor lamps or house lighting circuits with only 1 lamp.  I'm also using them in my stairwells and hallways for safety.

If I still lived in California where earthquakes could knock out power I would use them widely as emergency lights.  Here in Maine, we get outages often in winter storms and they can last hours to days which is why I have an automatic standby generator that can power the whole property for over a week running on propane.  But the generator takes up to 15 seconds to start and these lamps will bridge that gap which I find compelling.  


Monday, November 19, 2018

Failing first generation microinverters



I installed my first array of 26 solar panels back in 2009 using state of the art microinverters made by Enphase.  I was an early adopter of the new technology that has created a paradigm change in solar power systems.  Previously an array of solar panels was wired in to a single large inverter that converts DC power from the solar panels to 240VAC that feeds in to the building.  

Microinverters are mounted behind each individual solar panel.  This creates a granular system that allows precise monitoring of the power produced at each panel.  It also offers a more graceful failure mode, if a single microinverter or panel fails, the whole system does not go down as it would with a large central inverter.
Over the years several of these first generation microinverters have failed and Enphase have been very responsive about sending out replacement units, honoring their 15 year warranty.  Of the original 26 inverters, 4 have now required replacement.  More details here.

It is tedious to have to go up on the roof using 2 ladders with a helpful neighbor and remove one of the panels and replace the inverter below it.   I hope the replacements will last longer!  As an electrical engineer, I recognize that the electronics are operating in the harshest conditions of heat and cold up on the roof and clearly there has been a learning curve as they gather data from failed units and incrementally improve the design.

Sunday, October 28, 2018

Heating my bedroom - recovering chimney heat

In my last post I explored optimal ways to heat my bedroom using a small electric heater.  In this post I will detail how I have diverted trapped heat from around the chimney in the hallway to heat my room.  The chimney is cinder block and was exposed when my ex and I bought the house.  It was pretty ugly so I boxed it in with drywall on both floors, being careful to keep combustibles several inches from the hot surface.

The large wood stove in the basement is big enough to heat the whole house as heat rises from the open basement stairs and 2nd floor stairs to the bedrooms and bathroom.  The pictures below show the first floor boxed in chimney and the vents I installed to release the trapped heat.
By ventilating the closed space around the chimney I am releasing heat that could build up and prevent a chimney fire which is an added benefit.  But the primary goal was to recover this trapped heat.


My bedroom is adjacent to the chimney and I had used a similar scheme to ventilate the walled in chimney on the 2nd floor, but the vents both were in the hallway.  I decided to move the upper vent into my bedroom to divert the heat there.  This drawing shows the simple change I made:

Here's the bedroom wall before I cut the vent:
As you can see the area near the chimney is warmer than the other walls - through 2 layers of drywall!

After cutting the hole and closing off the vent in the hallway, I immediately felt warm air exiting the new vent in my bedroom.
 
With only a moderate fire going the heat coming from the vent is at least 10F hotter than the ambient room temperature. 

And after keeping the stove lit for a few days it's a lot warmer at the top vent (105F).


So I'm hoping this recovered heat will reduce the electricity needed to heat the bedroom.



Tuesday, October 23, 2018

Exploring efficeincy of electric heating my bedroom

This spring I moved into the smaller bedroom of my house so I could rent out the much larger bedroom full-time.  I had been renting the small room out on airbnb previously, but only during the warmer months .  While the large bedroom has an adequate Rinnai propane heater, the small room has no permanent heater.  As winter is approaching I have started using a small 1500W heater made by Pelonis.  

I bought this neat little unit back in the 1980s.  It contains a ceramic disc heating element that was a spin-off from NASA space shuttle technology.  The clever feature of this unique heater is that it can continuously vary it's output in response to room temperature.  The temperature sensor is embedded in the power cord a few inches from the heater.
A simple knob lets you set the temperature, and a switch allows automatic (thermostatically controlled) or manual setting.  The manual setting just stays at a fixed power level.  Output power can range from 350 to 1500 Watts.

In use what happens in the automatic mode is that as the room approaches the set temperature, the heater and fan speed dial down across a continuous range.  The issue I have is that the fan can produce some odd harmonics at some speeds that can be annoying - it sounds like a jet engine winding down.

Recently I came across this clever programmable wireless thermostat that can switch power to a room heater plugged into its switching module.
wireless programmable thermostat
So I bought a couple of them (click image for details) since they were relatively inexpensive and appealed to my geek nature.  I like the programmable features that let you set up to 8 programs for specific days and time of days.  Of course actually programming it is very tedious, but I figured it out eventually. (And while the picture shows Centigrade, it can be set for Fahrenheit).

The obvious application was for my bedroom, so I could program the heater to set back during the day and warm up the bedroom at night before I go to bed.  As an interim solution I had been using a programmable timer to turn the heater on and off in its automatic mode, but this left the room too cold during the day if I wanted to take a nap.  I like these $10 timers from Harbor Freight (click image for details).
https://www.harborfreight.com/digital-timer-95205.html
Like the thermostat, it takes time to figure out, but can be used to set multiple times of on/off cycles per day and has a manual override button.  

So I decided to test the new wireless thermostat with the Pelonis heater and compare it to the timer that would activate the heater in it's auto mode only at night.  With the wireless thermostat, I set the heater to switch on at full power of 1500 Watts and let it cycle on and off based on the temperature sensed at the thermostat on my bedside table.  This means that I would not hear the annoying whine of the heater at lower speeds, but it would switch off for periods which is better, and while loud when running it is less irritating.

So being a geek, I decided to see which mode is the most efficient from a power standpoint.  In theory using this heater to maintain a fixed temperature in the room should be the same either way.  But the devil is in the details.  I set up a data logger to record outside temperature, room temperature, heater power and outside ambient light (because why not!).  All the sensors are ones that I custom built for other projects.  I also used a Kill-A-Watt meter to record cumulative power.
Test setup with datalogger, sensors and Kill-A-Watt meter

 Here's what I learned.
click image to embiggen
On day 1 the wireless programmable thermostat switched the heater on and off and used 5.2kWh.  On day 2 the heater used its internal thermostat and used 6.5kWh.  Note that at the left end of the chart the wireless thermostat was activating the heater periodically to maintain the set-back temperature of 65F.  As the winter gets colder, this will be a bonus.

The outdoor temperatures were roughly the same averaging in the mid 30s, so it's a fair comparison and clearly the the external thermostat wins and will save me about 1kWh (at the utility rate of 15cents) a day in energy costs while also reducing my carbon footprint.  Maine's electric power is almost 40% renewable, and my solar power system provides much of my energy in the winter anyway so the carbon footprint aspect is relatively moot.  I have found that I prefer the sound of the heater switching on and off and sleep better not hearing the whine of the reduced power mode.  The only drawback is the wide temperature swings of over 5 degrees, but I can handle that.

I later replaced the heater with a more modern and much quieter unit. Then I upgraded to a Nest thermostat and built a custom interface for that so that it could switch power to the heater. This works extremely well for me and allows control of the heater from anywhere, any time via Alexa and my Echo Dots.



Saturday, August 18, 2018

The unsustainable world of computer printers - and what you can do

My multi-function computer printer started failing a few months ago.  The color LCD screen on the front went first - showing inverted colors, then finally the interface failed.  I tried switching from USB to wireless, and that worked for a day.  Tried a network setup and that didn't connect, all of which wasted a half hour of my time or more.  I had bought it in December 2013 so it is almost 5 years old and it cost me over $200 back then.  The thing is that there is no good reason for it to fail so soon.  I design electronic products for a living and a machine like this should last over 15 years or much more ideally.  But it is deliberate planned obsolescence by the manufacturers.  Over the last 30 years I have personally owned more than 8 printers as they evolved from "dot-matrix" to laser and inkjet technologies.  And from black to color and then photo quality.


I bought a replacement that is basically the same as the old one - but of course I can't use the same ink cartridges!  And of course it was packed in (non-recyclable) styrofoam, just like the last one.  The printer manufacturers want to keep making money on new designs and ink cartridges.  The folks at Staples wanted to sell me a 4 year "protection policy".  That just made me angry!  These things ALWAYS fail right after the policy expires.  In fact the staff person freely admitted that printers typically only last 3 years.  So I should count myself lucky that my last printer lasted 5 years?  When I took the new printer in it's box to the checkout counter, the gal there said "Oh, let me get some ink cartridges for that."  Apparently they only provide "starter" cartridges that just last long enough to align the print heads!  That's like selling a new car with only spare "donut" tires on it!  So that doubled the cost of the printer that I thought was reasonably priced as marked down old model.

I think about the millions of printers that the world has to replace every year and it boggles my mind!  Plastic comes from oil, so this is driving our global demand for oil - even if the plastic can be recycled.  

I tested the (Energy Star rated) printer with my Kill-A-Watt meter and found that it drops to less than 1 Watt in sleep mode and peaks at 6 Watts when printing.  If I were to leave it on like most people do, I would only be using up to .7 KWh/month.  While this may only cost about 7 to 10 cents each month, there is the environmental impact of the electricity source to consider.  Of course I'm on solar power, so this is moot for me.  But I have all my computer equipment plugged in to a switched outlet box with separate switches for each device.  This way I can kill all the phantom loads like the monitor and USB peripherals.  With this model printer, if I turn it off using the button on the printer, it does not seem to draw measurable phantom power unlike older models.  My last laser printer drew over 30 watts in "sleep" mode!  Most big office printers are sitting there all night drawing phantom power when they are not being used and that really adds up.

So what can we as responsible consumers do?  Well first, don't trash that printer!  Remove the old print cartridges and sell them on eBay (yes people buy used cartridges to re-fill) - or turn them in to the office supply store to be recycled.  And if you have spare unused ones, sell or return them too.  Most office supply stores will also recycle the old printer too.  Here is what Staples says about their electronics recycling program:

"Materials Staples collects from customers are kept in an employee-only area of the store for a short time until sufficient material has been collected to backhaul to our Staples® warehouse locations. The Staples warehouses consolidate the electronics into full truckloads and ship the material to the facilities of our national recycling partner, ERI Direct. There, the material is triaged based on potential for re-manufacturing or parts harvesting. Items that can be refurbished or that may have parts that can be reused are separated and processed separately."

Staples is an e-Stewards Enterprise, which means that we have committed to using certified e-Stewards recyclers whenever possible to handle the materials we collect. ERI Direct, a certified e-Stewards Recycler, is our primary recycling partner for electronics and therefore must be audited against stringent standards and disclose their downstream processing partners to ensure that they are using responsible e-waste recycling practices and not exporting or otherwise improperly handling electronic materials."

This is commendable and the ERI web site includes a good video that clearly shows how responsible they are about recycling.  But it would be a better world if printer manufacturers took responsibility to make better, longer lasting equipment.  They could also design around a standard ink cartridge that works across most models.

As I was writing this my new printer's screen lit up and showed:
Followed by the printer turning off, then on to install an update.

Ok, so that's impressive - it can update it's own software!  And this model can also order it's own ink cartridges when they run low.  They have got us right where they want us!  But this is all driven by corporate greed and not the common good.  This is just not sustainable in the long term.  We have one planet worth of resources and industry keeps using it up as if it was infinite.

Monday, July 30, 2018

Optimised water heating and upgrade for meeting house

I have been very involved in maintaining my Quaker Meeting House in Damariscotta, Maine for many years.  I have helped to "green" the building in many ways, from adding a modest solar power system, to many efficiency upgrades.  The building was constructed in 1995 and was built with "traditional" construction and heating system.  This means that it uses an oil fired boiler like many buildings and homes in New England.  So about 10 years ago we decided to switch to a B20 (20% biofuel) mix that became available in our area.  Higher biofuel ratios do not work well in frigid temperatures because it can congeal and also corrode seals.

But then we realized that the water heater is tied in to the huge oil boiler and the boiler was running during the warm seasons to heat a 30 gallon tank located in the cool basement.  In this environment the tank loses heat and needs to be "topped up" fairly often wasting a lot of fuel oil to heat water that was not being used.  So we came up with a work-around.  We had a small 4 gallon electric heater installed after the hot water tank.  Then we installed a timer that only runs the oil "boiler-mate" for hot water on Sundays when we need more for dish washing and events.  When the tank is not being heated by the boiler, the stored water is tempered by the ambient environment, thus raising the temperature of the well water from a nominal 45-50F to 50-60F.  This reduces the load on the small electric heater a little.

Now the modest weekday hot water needs are met by this small electric heater.  Due to the Regional Greenhouse Gas Initiative (RGGI) in New England, the electric supply is supplied from at least 45% renewable sources such as hydro, solar and wind.  So this is a win from a cost, carbon footprint and efficiency standpoint.

All this came up when someone noticed rusty water coming from the hot faucets.  I drained water from each tank and determined that the small electric unit had rusted out inside.  Our local plumbing company wanted $400 for a new heater, plus labor.  This seemed unreasonably high so I found a nice Bosch unit on Amazon Prime (free delivery of a 20+ lb package!) for under $200.  It took me about 20 minutes to replace the unit.